
Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

��

�����������

�

	
 �� ��

���

Printed with FinePrint - purchase at www.fineprint.com

�	
 �

����

���

	
 �

�����������

	

	
 �

��

�����������

��

�

	

���

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

Printed with FinePrint - purchase at www.fineprint.com

EECS 583 – Lecture 15

Machine Information,

Scheduling a Basic Block

University of Michigan

March 5, 2003

- 1 -

Machine Information

� Each step of code generation requires knowledge of the
machine
» Hard code it? – used to be common practice

» Retargetability, then cannot

� What does the code generator need to know about the
target processor?
» Structural information?

� No

» For each opcode

� What registers can be accessed as each of its operands

� Other operand encoding limitations

» Operation latencies

� Read inputs, write outputs

» Resources utilized

� Which ones, when

Printed with FinePrint - purchase at www.fineprint.com

- 2 -

Machine Description (mdes)

� Elcor mdes supports very general class of EPIC
processors
» Probably more general than you need ☺

» Weakness – Does not support ISA changes like GCC

� Terminology

» Generic opcode

� Virtual opcode, machine supports k versions of it

� ADD_W

» Architecture opcode or unit specific opcode or sched opcode

� Specific assembly operation of the processor

� ADD_W.0 = add on function unit 0

� Each unit specific opcode has 3 properties
» IO format

» Latency

» Resource usage

- 3 -

IO Format

� Registers, register files

» Number, width, static or rotating

» Read-only (hardwired 0) or read-write

� Operation

» Number of source/dests

» Predicated or not

» For each source/dest/pred

� What register file(s) can be read/written

� Literals, if so, how big

Multicluster machine example:

ADD_W.0 gpr1, gpr1 : gpr1

ADD_W_L.0 gpr1, lit6 : gpr1

ADD_W.1 gpr2, gpr2 : gpr2

Printed with FinePrint - purchase at www.fineprint.com

- 4 -

Latency Information

� Multiply takes 3 cycles

» No, not that simple!!!

� Differential input/output

latencies

» Earliest read latency for each

source operand

» Latest read latency for each

source operand

» Earliest write latency for each

destination operand

» Latest write latency for each

destination operand

� Why all this?

» Unexpected events may make

operands arrive late or be

produced early

� Compound op: part may finish

early or start late

� Instruction re-execution by

» Exception handlers

» Interupt handlers

� Ex: mpyadd(d1, d2, s1, s2, s3)

» d1 = s1 * s2, d2 = d1 + s3

s1 s2 s3

d1 d2

0

1

2

3

s1: 0/2

s2: 0/2

s3: 2/2

d1: 2/3

d2: 2/4

E/L

- 5 -

Memory Serialization Latency

� Ensuring the proper ordering of dependent memory

operations

� Not the memory latency

» But, point in the memory pipeline where 2 ops are guaranteed to

be processed in sequential order

� Page fault – memory op is re-executed, so need

» Earliest mem serialization latency

» Latest mem serialization latency

� Remember

» Compiler will use this, so any 2 memory ops that cannot be

proven independent, must be separated by mem serialization

latency.

Printed with FinePrint - purchase at www.fineprint.com

- 6 -

Branch Latency

� Time relative to the initiation time of a branch at which

the target of the branch is initiated

� What about branch prediction?

» Can reduce branch latency

» But, may not make it 1

� We will assume branch latency is 1 for this class (ie no

delay slots!)

0: branch

1: xxx

2: yyy

3: target

branch latency = k (3)

delay slots = k – 1 (2)

Note xxx and yyy are multiOps

Example:

- 7 -

Resources

� A machine resource is any aspect of the target processor
for which over-subscription is possible if not explicitly
managed by the compiler

» Scheduler must pick conflict free combinations

� 3 kinds of machine resources
» Hardware resources are hardware entities that would be occupied

or used during the execution of an opcode

� Integer ALUS, pipeline stages, register ports, busses, etc.

» Abstract resources are conceptual entities that are used to model
operation conflicts or sharing constraints that do not directly
correspond to any hardware resource

� Sharing an instruction field

» Counted resources are identical resources such that k are required
to do something

� Any 2 input busses

Printed with FinePrint - purchase at www.fineprint.com

- 8 -

Reservation Tables

R
e
s1

R
e
s2

A
L

U

M
P

Y

R
es

u
lt

b
u

s

relative

time

0

1
R

e
s1

R
e
s2

A
L

U

M
P

Y

R
es

u
lt

b
u

s
relative

time

0

1

R
e
s1

R
e
s2

A
L

U

M
P

Y

R
es

u
lt

b
u

s

relative

time

0

1

2

X X

X

X X

X

X

X X X

X

Integer add

Non-pipelined multiply

Load, uses ALU for addr calculation,

can’t issue load with add or multiply

For each opcode, the resources

used at each cycle relative to its

initiation time are specified in the

form of a table

Res1, Res2 are abstract resources

to model issue constraints

- 9 -

Now, Lets Get Back to Scheduling…

� Scheduling constraints

» What limits the operations that can be concurrently executed or

reordered?

» Processor resources – modeled by mdes

» Dependences between operations

� Data, memory, control

� Processor resources

» Manage using resource usage map (RU_map)

» When each resource will be used by already scheduled ops

» Considering an operation at time t

� See if each resource in reservation table is free

» Schedule an operation at time t

� Update RU_map by marking resources used by op busy

Printed with FinePrint - purchase at www.fineprint.com

- 10 -

Data Dependences

� Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 11 -

More Dependences

� Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

� Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

» Note, control flow (C0) is not a dependence

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control (C1)

if (r1 != 0)

r2 = load(r1)

Printed with FinePrint - purchase at www.fineprint.com

- 12 -

Dependence Graph

� Represent dependences between operations in a block via

a DAG

» Nodes = operations

» Edges = dependences

� Single-pass traversal required to

insert dependences

� Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

- 13 -

Dependence Edge Latencies

� Edge latency = minimum number of cycles necessary

between initiation of the predecessor and successor in

order to satisfy the dependence

� Register flow dependence, a � b

» Latest_write(a) – Earliest_read(b)

� Register anti dependence, a � b

» Latest_read(a) – Earliest_write(b) + 1

� Register output dependence, a � b

» Latest_write(a) – Earliest_write(b) + 1

� Negative latency

» Possible, means successor can start before predecessor

» We will only deal with latency >= 0, so MAX any latency with 0

Printed with FinePrint - purchase at www.fineprint.com

- 14 -

Dependence Edge Latencies (2)

� Memory dependences, a � b (all types, flow, anti,
output)
» latency = latest_serialization_latency(a) –

earliest_serialization_latency(b) + 1

» Prioritized memory operations

� Hardware orders memory ops by order in MultiOp

� Latency can be 0 with this support

� Control dependences
» branch � b

� Op b cannot issue until prior branch completed

� latency = branch_latency

» a � branch

� Op a must be issued before the branch completes

� latency = 1 – branch_latency (can be negative)

� conservative, latency = MAX(0, 1-branch_latency)

- 15 -

Class Problem

r1 = load(r2)

r2 = r2 + 1

store (r8, r2)

r3 = load(r2)

r4 = r1 * r3

r5 = r5 + r4

r2 = r6 + 4

store (r2, r5)

machine model

min/max read/write

latencies

add: src 0/1

dst 1/1

mpy: src 0/2

dst 2/3

load: src 0/0

dst 2/2

sync 1/1

store: src 0/0

dst -

sync 1/1

1. Draw dependence graph

2. Label edges with type and

latencies

Printed with FinePrint - purchase at www.fineprint.com

- 16 -

Dependence Graph Properties - Estart

� Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 17 -

Lstart

� Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

Printed with FinePrint - purchase at www.fineprint.com

- 18 -

Slack

� Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

- 19 -

Critical Path

� Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

Printed with FinePrint - purchase at www.fineprint.com

- 20 -

Class Problem

1

2

5

43

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

- 21 -

Operation Priority

� Priority – Need a mechanism to decide which ops to

schedule first (when you have multiple choices)

� Common priority functions

» Height – Distance from exit node

� Give priority to amount of work left to do

» Slackness – inversely proportional to slack

� Give priority to ops on the critical path

» Register use – priority to nodes with more source operands and

fewer destination operands

� Reduces number of live registers

» Uncover – high priority to nodes with many children

� Frees up more nodes

» Original order – when all else fails

Printed with FinePrint - purchase at www.fineprint.com

- 22 -

Height-Based Priority

� Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1

2

3

4

5

6

7

8

9

10

10

1
1

8, 8

7

10, 1

0, 5

1

2

- 23 -

List Scheduling (Cycle Scheduler)

� Build dependence graph, calculate priority

� Add all ops to UNSCHEDULED set

� time = -1

� while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

� op can be scheduled at current time? (are the resources free?)

� Yes, schedule it, op.issue_time = time

� Mark resources busy in RU_map relative to issue time

� Remove op from UNSCHEDULED/READY sets

� No, continue

Printed with FinePrint - purchase at www.fineprint.com

- 24 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

1
0, 1

0, 5

1

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, non-pipelined

ALU = 1 cycle

- 25 -

Cycle Scheduling Example (2)

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

1
0, 1

0, 5

1

2

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

Printed with FinePrint - purchase at www.fineprint.com

- 26 -

Cycle Scheduling Example (3)

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

1
0, 1

0, 5

1

2

Schedule

time Ready Placed

0 1,2,7 1,2

1 7 -

2 3,4,7 3,4

3 7 -

4 5,7,8 5,8

5 7 -

6 6,7 6,7

7 -

8 9 9

9 10 10

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

- 27 -

Class Problem

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using cycle scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

Printed with FinePrint - purchase at www.fineprint.com

